On-Line Building Energy Optimization Using Deep Reinforcement Learning
نویسندگان
چکیده
منابع مشابه
On-line Building Energy Optimization using Deep Reinforcement Learning
Unprecedented high volumes of data are becoming available with the growth of the advanced metering infrastructure. These are expected to benefit planning and operation of the future power system, and to help the customers transition from a passive to an active role. In this paper, we explore for the first time in the smart grid context the benefits of using Deep Reinforcement Learning, a hybrid...
متن کاملOperation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملReinforcement Learning with Deep Energy-Based Policies
We propose a method for learning expressive energy-based policies for continuous states and actions, which has been feasible only in tabular domains before. We apply our method to learning maximum entropy policies, resulting into a new algorithm, called soft Q-learning, that expresses the optimal policy via a Boltzmann distribution. We use the recently proposed amortized Stein variational gradi...
متن کاملLearning State Representations for Query Optimization with Deep Reinforcement Learning
Deep reinforcement learning is quickly changing the field of artificial intelligence. These models are able to capture a high level understanding of their environment, enabling them to learn difficult dynamic tasks in a variety of domains. In the database field, query optimization remains a difficult problem. Our goal in this work is to explore the capabilities of deep reinforcement learning in...
متن کاملBuilding on Deep Learning
We propose using deep learning as the “workhorse” of a cognitive architecture. We show how deep learning can be leveraged to learn representations, such as a hierarchy of analogical schemas, from relational data. This approach to higher cognition drives some desiderata of deep learning, particularly modality independence and the ability to make top-down predictions. Finally, we consider the pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Smart Grid
سال: 2019
ISSN: 1949-3053,1949-3061
DOI: 10.1109/tsg.2018.2834219